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A scalable directed graph model with reciprocal edges∗
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Abstract

A stronger relation exists between two nodes when they

each point to one another (reciprocal edge) as compared

to when only one points to the other (one-way edge).

The proportion of reciprocal edges in a network is a good

indicator of how tight the relations among the nodes are.

The mutual relations could be an indication of friendship

in a graph with social behavior or the information flow

in a communication network. Despite their importance,

reciprocal edges have been disregarded by most directed

graph models. In our study, we propose a directed graph

model that (i) combines the correct proportions of both

reciprocal and one-way edges, (ii) matches the in-, out-, and

reciprocal-degree distributions of the fitted graph, and (iii)

requires only O(m) work for a graph with m edges, making

it scalable to very large graphs. We show the effectiveness

of the proposed model on several real-world graphs and

compare it to other state-of-the-art models.

1 Introduction

Is the connection between two nodes one-way or two-
way (reciprocal)? We can infer a lot from the answer to
this question. Assume we are given an e-mail exchange
network. If two people are sending messages to each
other, there is a real connection between them. How-
ever, if the message is only being sent in one direction,
we cannot infer whether these two people know each
other or not (e.g., sender could be a spammer). The
high amount of reciprocal edges also is an indicator of
a social behaviour in a network.

To study the impact of reciprocal edges, we cate-
gorize the directed edges into two types: reciprocal and
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one-way (see Figure 1). Formally, we say an edge (u, v)
is reciprocal if the corresponding edge (v, u) also exists;
otherwise, we say it is one-way.

Figure 1: A directed graph with reciprocal (e.g., B-D)
and one-way (e.g., D-A) edges.

The reciprocity, r, measures the density of recip-
rocal edges in a network [15] where r is the ratio of
the number of reciprocal edges to the total number of
edges. It can be interpreted as the probability of a ran-
dom edge in a network being reciprocated. The reci-
procity ratio is higher in the networks with social flavor
(e.g., twitter, flickr, e-mail) whereas it is lower in infor-
mation networks (e.g., web, news forums) or temporal
networks (e.g., citation); see Table 1. It was observed
that if a network has more reciprocal edges, viruses or
news spread more quickly [15]. The reciprocity mea-
sure defined in [15] cannot distinguish networks with
different densities (dense networks tend to have higher
r values) and it can be exaggerated by self-links. The
reciprocity measure can be improved by, for example,
removing self-links and normalizing using the density
[5].

In another interesting study [12], the formation
order of the reciprocal edges is analyzed in some social
interaction based networks such as Flickr (which has
68% reciprocal edges), and it is found that 83% of all
reciprocal edges are created within 48 hours after the
initial edge creation. Twitter is also analyzed in terms
of reciprocity and found that 22.1% of the edges are
reciprocal [7], which shows that twitter is the mixture
of social and information accessing network.

Our interest is in realistic generative models that
capture, at a minimum, the degree distributions of real-
world networks. It is important to study networks
to understand formation behaviours, detect abnormali-
ties, and increase robustness. However, real networks
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may not be released due to privacy and security is-
sues. Therefore, random network generators reproduc-
ing salient features of real networks are required.

One of the most common salient features among
networks is that degree distributions of many real
networks is heavy-tailed [2]. Existing directed graph
models such as Stochastic Kronecker Graphs (SKG)
[9, 8] and Forest Fire (FF) [10] roughly match the given
in-degree and out-degree distributions. Moreover, these
and many other directed graph models do not generate
any or many reciprocal edges.

Another concern in random graph generation is
scalability. As the sizes of networks get larger and
larger, generating random graphs in a scalable manner
becomes crucial. Many graph generators add edges
incrementally, creating new edges based on previous
insertions. Another drawback is finding the right
parameters of the models (e.g., SKG, FF, etc.) is
very time intensive for large scale graphs. Without
costly parameter estimation steps, we need to generate
realistic directed graphs with reciprocal edges in a
scalable manner.

1.1 Contributions
• Reciprocal edges represent social exchanges in the
networks; however, most generative models specif-
ically designed for social networks are missing this
crucial behavior. We propose the Fast Reciprocal

Directed (FRD) graph generator which explicitly
matches the reciprocal degree distribution as well
as the in- and out- degree distributions.
• A critical component of the FRD is a fast model
for generating a directed graph without reciprocal
edges. For that purpose, we propose the Fast

Directed (FD) graph generator, which is a close
cousin of the Chung-Lu [3] and edge configuration
models [14, 1].
• Neither FRD nor FD require any “model fitting”
parameters beyond the target degree distributions.
• Both of our proposed models are fast, generating
m edges in O(m) time for a constant maximum
degree. Our models take less than a minute to
generate a graph with multi-million nodes and
edges, faster than any comparable models.
• We also explain why the number of degree-1 nodes
is much lower than intended in Chung-Lu like
models [3, 17] and propose a solution to obtain a
better match for the degree-1 vertices.

2 Related Work

In this section, we consider existing directed genera-
tive graph models. Most previous models suffer from
some combination of the following problems: few or no

reciprocal edges, unable to match various degree dis-
tributions precisely, lack of scalability in fitting and/or
generation (most models require some “history” to pick
the next set of edges).

Kleinberg et al. [6] propose the Edge Copying (EC)
model for web networks based on the observation that
web network has topic-based clusters. In the EC model,
when a new node arrives, it selects a random vertex v
and copies a specified number of links k of vertex v
[6]. The EC model has no mechanism for reciprocal
edges since new nodes always point to older nodes.
Leskovec et al. proposes the Forest Fire (FF) model [10]
in which a new node can connect both to the vertices
pointing to vertex v or to the vertices that vertex
v points to. The edge creation continues with the
neighbors of the neighbors of v, in other words fire
spreads in a region. The FF model has forward pf
and backward pb burning probabilities which are used
to specify the density(seriousness) of the fire region.
FF is a state-of-the-art model and will be used in our
comparative studies. Like EC, FF model cannot create
reverse (reciprocal) links between two nodes. Also,
both methods are serial in nature because each new set
of links for a new vertex depends on the graph that
has been created thus far. To fit FF to a real graph,
the forward pf and backward pb burning parameters
must be adjusted to match the number of the edges
in the fitted graph. In large scale networks, each
fitting attempt with different burning parameters is very
expensive. In practice, the required time of the FF
fitting is (number of attempts to find the paramaters)
× (FF graph generation time), but we only report the
generation time (after fitting is complete) in our studies.

Unlike the EC model and FF model, the Stochastic
Kronecker Graph (SKG) model [9, 8] is a scalable model.
It is also considered to be state-of-the-art and is used
for comparison in our experiments. The SKG model
begins with an initiator matrix (typically 2 × 2) and
produces larger graphs by recursive Kronecker product
much faster than incremental methods. For large scale
graphs, computing the initiator matrix is very time
intensive [8]. In fact, we were unable to compute the
initiator matrix for the larger graphs in a reasonable
time frame; therefore for the remainder, we use the
initiator matrices that have been previously reported
in the literature [8, 19]. As with FF, we only report the
generation time for the graphs.

In another directed model, the growth of Wikipedia
is imitated and reciprocal edges are partly sup-
ported [21, 20]. This model extends the well-known
preferential attachment (PA) model [2] by including
reciprocity measure r. Each node arrives at a time and
connects to k sink vertices, and then reciprocal links



are formed from those sink vertices to the newly added
node with the probability of reciprocity, r. They test
their model only for Wikipedia network and show that
it matches the in-degree distribution well; however, it
deviates sharply from the real out-degree distribution.
Like EC and FF, this model is not scalable.

The work of this paper is closely related to the
Chung-Lu (CL) model [3], which generates an undi-
rected graph whose degree distribution matches to the
given degree distribution. The CL model creates an
edge between vi and vj proportional to the product of
their degrees. In the CL model, each edge creation is
done by independent coin flips and therefore, it is not
suitable for scaling. A “fast” CL model that behaves like
SKG model in terms of several network measures was
introduced in [16]. Another model is the Edge Configu-
ration (EdgeCon) model [14, 1] creates a set containing
di copies of each vertex vi and then chooses random
matching of the elements in the set to create edges.

3 Proposed Directed Graph Models

In this study, we propose two scalable directed graph
models: the Fast Directed (FD) model which generates
a directed graph G = (V,E) with respect to the given
in- and out-degree distributions, and the Fast Reciprocal
Directed (FRD) which explicitly accounts for reciprocal
edges as well.

Before going into the details, we present the nota-
tion. Given a directed graph G, let n be the number
of nodes and m be the number of directed edges. For
instance, in Figure 1, n = 5 and m = 7. We divide the
edges into three types:
• d↔i = reciprocal degree (each reciprocal edge cor-
responds to a pair of directed edges),
• d←i = in-degree (excluding reciprocal edges), and
• d→i = out-degree (excluding reciprocal edges).

We also define the total in- and out- degrees, which
include the reciprocal edges, i.e.,
• d⇐i = d←i + d↔i = total in-degree, and
• d⇒i = d→i + d↔i = total out-degree.

Most directed graph models consider only the total in-
and out-degrees, ignoring reciprocity. As an example of
these measures, node B in Figure 1 has d↔B = 2, d←B = 2,
d→B = 0, d⇐B = 4, and d⇒B = 2.

We may also assemble corresponding degree distri-
butions, as follows. For any d = 0, 1, . . . , define
• n↔d = Number of nodes with reciprocal-degree d,
• n←d = Number of nodes with in-degree d,
• n→d = Number of nodes with out-degree d,
• n⇐d = Number of nodes with total-in-degree d, and
• n⇒d = Number of nodes with total-out-degree d.

Let dmax be the maximum of all possible degrees. Then

we can express n and m as

n =

dmax∑

d=0

n←d =

dmax∑

d=0

n→d =

dmax∑

d=0

n↔d ,

m =

dmax∑

d=1

d · n←d + d · n↔d =

dmax∑

d=1

d · n→d + d · n↔d .

The reciprocity ratio of a graph [15] is

r =
# reciprocated edges

# edges
=

∑dmax

d=1 d · n↔d
m

.

3.1 The Fast Directed Graph Model In this
model, we consider only the total in- and out-degrees,
ignoring reciprocity.

To generate the Fast Directed (FD) model, we
extend the Fast Chung-Lu (FCL) model for undirected
graphs [17]. This model is based on the idea that each
edge creation can be done independently if the degree
distribution is given. The FCL reduces the complexity
of the CL model from O(n2) to O(m), and the same can
be done in the directed case.

In the Chung-Lu model [3], after m insertions (and
assuming d⇒i d⇐j < m for all i, j) the probability of
edge (i, j) is

pij =
d⇒i d⇐j
m

.

The naive approach flips a coin for each edge
independently. The “fast” approach flips a coin to pick
each endpoint. The probability of picking node i as
the source is proportional to d⇒i and the probability of
picking node j as the destination is proportional to d⇐j .

Our implementation works as described in Alg. 1.
We first pick all the source nodes and then all the sink
nodes using the weighted vertex selection described in
Alg. 2. If we want 500 nodes of out-degree of 2, for
example, we create a “degree-2 pool” of 500 vertices
and pick from it a total of 1000 times in expectation by
doing weighted sampling of the pools. Within the pool,
we pick a vertex uniformly at random with the further
expectation that each vertex in the pool will be picked 2
times on average. In Alg. 2, the pool of degree-d vertices
is denoted by Pd and the likelihood that the dth pool
is selected is denoted by wd. In all cases except d = 1,
the size of the pool is defined by the number of vertices
of that degree and the weight of the pool is the number
of edges that should be in that pool. The one exception
is the degree-1 pool which has a blowup factor b. For
now, assume b = 1; we explain its importance further
on in §3.3. At the end of Alg. 2, we randomly relabel
the vertices so there is no correlation between the degree
and vertex identifier.



The FD method can produce repeat edges, unlike
the naive version that flips n2 weighted coins (one per
edge). Nevertheless, this has not been a major problem
in our experience. Another alternative to Alg. 2 is to put
d copies of each degree-d vertex into a long array and
then randomly permute it—this is the approach of the
edge configuration model. This gives the exact specified
degree distribution (excepting possible repeats) by using
a random permutation of a length m∗ array. This would
produce very similar results to what we show here, and
is certainly a viable alternative. We also mention an
alternate way of generating Chung-Lu graphs that could
be adapted for the directed case [11].

Algorithm 1 Fast Directed Graph Model

procedure FDModel(G,b⇐,b⇒)
Calculate {n⇐d } and {n

⇒
d } for G

{ ik } ← VertexSelect({n⇒d } , b
⇒)

{ jk } ← VertexSelect({n⇐d } , b
⇐)

E ← { (ik, jk) }
Remove self-links and duplicates from E
return E

end procedure

Algorithm 2 Weighted Vertex Selection

procedure VertexSelect({nd }, b)

n←
∑dmax

d=0 nd

n∗ ← b · n1 +
∑dmax

d=2 nd

m←
∑dmax

d=1 d · nd

P = { 1, . . . , n∗ }
for all d = 1, . . . , dmax do

wd ← d · nd/m
if d > 1 then
Pd ←nd vertices from P

else
P1 ←b · n1 vertices from P

end if
P ← P \ Pd

end for
for all k = 1, . . . ,m do

d̂k ← Random degree in { 1, . . . , dmax },

proportional to weights {wd }
ik ← Uniform random vertex in Pd̂k

end for
P ← unique indices in { ik }

m
k=1

π ← Random mapping from P to { 1, . . . , n }
return { π(ik) }

m
k=1

end procedure

3.2 The Fast-Reciprocal Directed graph model
The FD model generates a directed graph and matches
to the total in- and out-degree distributions. However, it
produces virtually no reciprocal edges. To overcome this
issue, we propose the Fast Reciprocal Directed (FRD)
graph model.

Here, the goal is quite simple: capture the reciprocal
edges using an undirected model and the remaining
directed edges using a directed model. After that,
we blend the generated edges from each model in one
model. In this case, we explicitly consider the three
distributions, {n↔d }, {n

←
d }, and {n

→
d }. The method

is presented in Alg. 3.

Algorithm 3 Fast Reciprocal Directed Graph Model

procedure FDModel(G,b↔, b←,b→)
Calculate {n↔d }, {n

←
d }, and {n

→
d } for G

{ ik } ← VertexSelect({ 1
2n
↔
d } , b

↔)
{ jk } ← VertexSelect({ 1

2n
↔
d } , b

↔)
E1 ← { (ik, jk), (jk, ik) }
{ il } ← VertexSelect({n→d } , b

→)
{ jl } ← VertexSelect({n←d } , b

←)
E2 ← { (il, jl) }
E ← E1 ∪ E2

Remove self-links and duplicates from E
return E

end procedure

3.3 Fixing the Number of Degree-1 Nodes Be-
low, we present our arguments for the case of the in-
degree, but the same arguments applied to out-degree
or reciprocal degree (with slightly more complexity in
the reciprocal case which is omitted due to space). We
use just the notation d to denote the in-degree, for sim-
plicity.

If we run VertexSelect (Alg. 2) repeatedly, al-
ways assigning the same ids to each vertex pool and
omitting the random relabeling (π) at the end, each
node will get its desired in-degree on average across mul-

tiple runs. For any single run, however, this will not be
the case. In fact, the degrees are Poisson distributed.

Claim 3.1. The probability that a vertex v in pool Pd

is selected x times is

Prob{ v selected x times | v ∈ Pd } =
dxe−d

x!
.

This claim is easy to see. We expect that pool Pd

will be selected wd = d · nd times. Therefore, each
element of Pd will be selected an average of d times,
so that is the Poisson parameter. (There may be some
small variance in the number of times that each pool is



selected, but the variance should be small enough not
to greatly impact the average degree.)

The effect of the Poisson distribution is particularly
noticeable in the pool of degree-1 nodes where the
probability that a node in P1 has in-degree x = 1 is
only 36%. An additional 36% will have an in-degree of
x = 0 and the remaining 28% will an in-degree of x ≥ 2.
Of course, there will be some contributions from the
other pools, e.g., P2 will produce 27% degree-1 nodes.
However, in a power law degree distribution, n2 ≪ n1 so
its contribution is small. Nevertheless, we can calculate
the expected number of degree-x nodes by summing over
the contributions across all degrees pools.

Claim 3.2. Let n′x denotes the number of nodes that

are selected exactly x times. Then

E(n′x) =
∑

d

nd
dxe−d

x!
.

Again, the claim is easy to see and so the proof is
omitted.

For many real-world distributions, n′1 ≪ n1. We
propose a workaround to this problem — we would like
to reduce the number of nodes in P1 that are selected
multiple times. To do this, we increase the size of the
pool via a blowup factor b, which is used as follows. Let
P1 contain b · n1 nodes. The weight of the pool will not
change, meaning that it will still be selected n1 times.
Therefore, we may make the following claim.

Claim 3.3. The probability that a vertex v in pool P1

with b · n1 elements is selected x times is

Prob { v selected x times | v ∈ P1 } = e−1/b/(bx · x!).

Furthermore, the expected number of nodes in P1 that

are selected exactly one time is n1 ·e
−1/b. Hence, letting

n′x denote the number of nodes that are selected exactly

x times, we have

E(n′x) = n1 ·
e−1/b

bx−1 · x!
+
∑

d>1

nd
dxe−d

x!
.

Proof. We still pick pool P1 a total of n1 times, so that
average (i.e., the Poisson parameter) for this pool is
now reduced to n1/(n1 · b) = 1/b since there are b · n1

elements.
The next equation comes from the fact that there

are b · n1 nodes in the pool, so we multiply the number
of nodes with the probability of being picked x times
with x = 1 to determine the expected number.

Finally, the revised expectation comes from chang-
ing the formula for the first pool to account for the
enlarged pool size.

If we choose, for example, b = 10, then we can
expect that 0.9 · n1 nodes in P1 to be selected exactly
one time. We show an example of the impact of this
modification in Figure 2, where we show the total in-
degree for soc-Epinions1 with and without a blowup
factor of b = 10. The degrees are logarithmicly binned
and summed. Note that the match for the number of
degree-1 nodes is improved, but there is small penalty
in the match for degree-2 nodes. We use b = 10 in all
experiments reported in this paper.
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Figure 2: Example of in-degree distribution with and
without blowup factor. Note that the model with
the blow-up factor matches degree-1 nodes precisely,
however, the model without blow-up generates only half
of the degree-1 nodes in the original graph.

4 Experimental Studies

We test our models on various directed networks such as
citation (cit-HepPh), web (web-NotreDame), and social
(soc-Epinions1, soc-LiveJournal) [22]. We also test our
models on large scale graphs coming from online social
networks (youtube, flickr, liveJournal) [13]. We list the
attributes of the networks in Table 1 after removing self-
links and making the graph unweighted (simple). Note
that reciprocity, r, is very low in the citation network.
We elaborate how we fit the models to the real networks
below.

Fast Directed (FD) and Fast Reciprocal
Directed (FRD) Our proposed models work directly
with the appropriate degree distributions of the input
graphs. We used a blowup factor of b = 10 in all cases.

Forest Fire (FF) We provide the number of nodes
n, and the forward and backward burning probabilities
pf and pb to the SNAP software [22]. To fit FF, we
match the generated graph models to the number of
edges in the real networks. For each target graph,
we search a range of values by incrementing pf value



Table 1: Networks used in this study. The value of r is the reciprocity measure, pf is the forward burning
parameter for FF, and the last column is the SKG initiator matrix.

Graph Name Nodes Edges Rec. Edges r pf SKG initiator

cit-HepPh [22] 34K 421K <1K 0.003 0.37 [0.990,0.440;0.347,0.538] [8]

soc-Epinions1 [22] 76K 508K 206K 0.405 0.346 [0.999,0.532;0.480,0.129] [8]

web-NotreDame [22] 325K 1,469K 759K 0.517 0.355 [0.999,0.414;0.453,0.229] [8]

soc-LiveJournal [22] 4,847K 68,475K 32,434K 0.632 0.358 [0.896,0.597;0.597,0.099] [19]

youtube [13] 1,157K 4,945K 3,909K 0.791 0.335 —

flickr [13] 1,861K 22,613K 14,117K 0.624 0.355 —

LiveJournal [13] 5,284K 77,402K 56,920K 0.735 0.355 —

by δp = 0.001 in range [0.2-0.5] to find the best
model giving the similar number of edges to the original
network; the values we use are reported in Table 1. We
set pb = 0.32 as described in [10].

Stochastic Kronecker Graphs (SKG) We use
the initiator matrices reported by previous studies: [8]
for cit-HepPh, soc-Epinions, and web-NotreDame and
[19] for soc-LiveJournal. We attempted to generate
initiator matrices for large graphs using [22], but the
program did not terminate within twenty-four hours.
Therefore, we only fit SKG to the networks obtained
from SNAP[22] data warehouse. We set the size of
the final adjacency matrix is 2⌈log2

(n)⌉, where n is the
number of nodes in the real graph.

We generate all the models in a Linux machine
with 12GB memory and Intel Xeon 2.7 Ghz processor.
The FD and FRD methods were implemented by us
in MATLAB; the SKG and Forest Fire generation
code were implemented in C++ from [22]. For fair
comparison, we do not time the printing or file saving
parts from the Snap software. Graph generation time
for each model is listed in Table 2. Among all of the
results, FD and FRD are the fastest, in that order. SKG
is little bit slower than both FD and FRD models. The
forest fire is the slowest even though C++ is much faster
than MATLAB code.

Table 2: Graph generation time

Graph Name SKG FD FRD FF

cit-HepPh 2.17s 0.16s 0.19s 18.80s

soc-Epinions 1.53s 0.29s 0.41s 6.73s

web-NotreDame 4.95s 0.56s 0.62s 29.66s

soc-LiveJournal 6m51s 31.15s 41.75 2h28m32s

youtube — 2.16s 2.53s 2m22s

flickr — 10.30s 12.20s 1h11m2s

liveJournal — 35.30s 59.98s 8h30m18s

We analyze the number of reciprocal edges gener-
ated by each model in Table 3. The FF model cannot
generate any reciprocal edges. The FD model can gen-
erate a few random reciprocal edges but this number
is negligible compared to the real number of recipro-
cal edges. The SKG model generates some reciprocal
edges; however, it is also much less than the real num-
ber. The FRD model performs the best and generate
correct amount of reciprocal edges.

Table 3: Reciprocal Edges created by each model

Graph Name Orig. SKG FD FRD FF

cit-HepPh 1071 1160 159 1148 0

soc-Epinions1 31K 835 86 30K 0

web-NotreDame 89K 5K 27 85K 0

soc-LiveJournal 1.5M 14K 171 1.5M 0

youtube 526K — 18 499K 0

flickr 1.3M — 205 1.3M 0

liveJournal 4.1M — 258 4.0M 0

We also analyze the generated degree distributions
by each model. The plot are log-binned for each of
readability. Figure 3 shows the results on the soc-
Epinions1 graph. Here we see that all four methods do
fairly well in terms of matching the total in- and out-
degree distributions. (The few low values for SKG are
due to its well-known cycling behavior [18].) However,
only the FRD method matches the reciprocal degree
distribution. The FD and SKG methods produce far too
few reciprocal edges and FF does not produce any. We
see very similar behavior in Figure 4 for soc-LiveJournal,
except here the FF and SKG degree distributions do not
match the total out-degree distribution very well. Once
again, neither FD nor SKG produce many reciprocal
edges and FF does not produce any. Figures for cit-
HepPh and web-NotreDame are shown in the appendix.

For larger graphs, we have not included SKG due
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Figure 3: Comparisons of degree distributions produced by various models for graph soc-Epinions1.
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Figure 4: Comparisons of degree distributions produced by various models for graph soc-LiveJournal.

to the expense of fitting the model. We do compare to
FF, however, for the youtube and flickr graphs shown
in Figure 5 and Figure 6, respectively. After extensive
tuning, FF is able to match the total in- and out-degree
distributions fairly well. But it of course cannot match
the reciprocal degree.

Finally, we shown results just for our methods on
the largest graph: livejournal in Figure??. We observe
a very close match for the FRD method in all three
distributions.

5 Significance and Impact

Directed networks have not received much attention in
terms of generative models. An obvious first-level goal
for a generative model would be to match the total
in- and out-degree distributions of a given graph. We
propose the FD model for this purpose. It is a fast
variant of the directed Chung-Lu model [1, 3, 4], picking
endpoints for each edge at random, proportional to each

node’s desired degree. This is a close cousin of the
configuration model [14]. It compares favorably in both
speed and accuracy to existing state-of-the-art models.

Directed social networks, however, cannot be mod-
elled well without considering reciprocal edges. The pro-
posed FD model generates very few reciprocal edges. In
fact, few models explicitly generate such edges. The
FF model, for example, does not even have the capabil-
ity to generate a reciprocal edge since new nodes only
connect to older nodes and there is no capacity for the
older nodes to add additional links (i.e., back to the new
node). Probably the most direct approach to this was
the extension of preferential attachment in [20], but it
was unable to capture both in- and out-degree distribu-
tions.

To also address modeling or reciprocal edges, we
propose an effective, if straightforward, FRD approach
to modeling these networks by separately building mod-
els for the reciprocal edges (modeled as an undirected
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Figure 5: Comparisons of degree distributions produced by various models for graph youtube.
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Figure 6: Comparisons of degree distributions produced by various models for graph flickr.

graph) and the non-reciprocal edges (modeled as a di-
rected graph using FD). We combine the two graphs in
an unsophisticated way — simply random mapping the
nodes in the undirected graph to the set of all nodes. A
more sophisticated approach would be to combine the
reciprocal and non-reciprocal edges in a way that re-
spected the total in- and out-degree distributions. To
our surprise, this did not seem to be necessary, indicat-
ing that there is not a strong correlation in reciprocal
and non-reciprocal edges in the graphs we studied.

Compared to state-of-the-art directed graph mod-
els such as FF [10] and SKG [8], both our FD and FRD
methods are significantly faster and give a more accu-
rate match to the various degree distributions. More-
over, there is no fitting procedure to determine the pa-
rameters of our FD and FRD methods. Even the best
choice for the “blowup” parameter, if one wants to be
very exact, can be determined from equations previously
outlined. Of course, we would be remiss if we failed

to point out that the FD and FRD models have many
more parameters (i.e., the entire degree distributions)
than FF and SKG, but this is still a very small amount
of data compared to the overall sizes of the graphs.

Our FD and FRD methods are highly scalable since
edge generation can be done in parallel, on multiple
threads or across multiple machines in a distributed
setting. The data required to generate each edge is the
order of the size of the maximum degree, and so can be
easily transmitted to multiple processors.

These models also serve as a baseline for under-
standing networks. For instance, a community is often
defined as a subgraph with more edges than expected as
compared to a random model. Similarly, baseline mod-
els are generally useful in understand the significance of
observed patterns such as directed triangles or more so-
phisticated patterns. When analyzing social networks,
explicit reciprocal edges are important since they are ex-
tremely common and clearly play a role in community
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Figure 7: Comparisons of degree distributions produced by various models for graph liveJournal.

structure and other observed phenomena.
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